skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Seo-Yeon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract The purpose of this study is to quantify the effects of coupled chemistry–climate interactions on the amplitude and structure of stratospheric temperature variability. To do so, the authors examine two simulations run on version 4 of the Whole Atmosphere Coupled Climate Model (WACCM): a “free-running” simulation that includes fully coupled chemistry–climate interactions and a “specified chemistry” version of the model forced with prescribed climatological-mean chemical composition. The results indicate that the inclusion of coupled chemistry–climate interactions increases the internal variability of temperature by a factor of ~2 in the lower tropical stratosphere and—to a lesser extent—in the Southern Hemisphere polar stratosphere. The increased temperature variability in the lower tropical stratosphere is associated with dynamically driven ozone–temperature feedbacks that are only included in the coupled chemistry simulation. The results highlight the fundamental role of two-way feedbacks between the atmospheric circulation and chemistry in driving climate variability in the lower stratosphere. 
    more » « less